Midterm Exam

(October 15th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

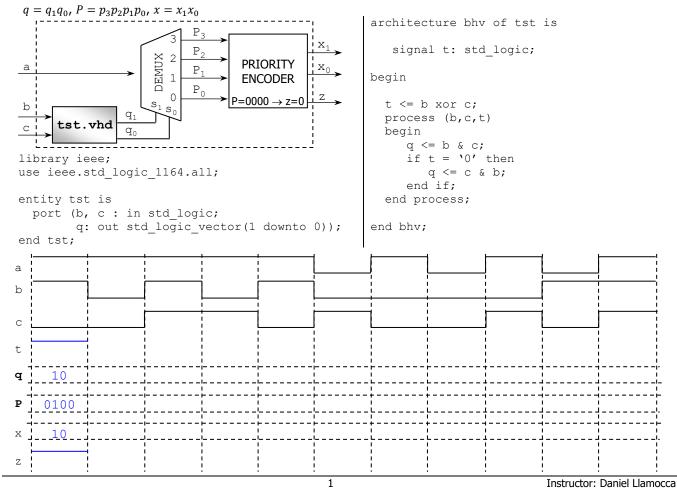
PROBLEM 1 (22 PTS)

a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

Decimal	BCD	Binary	Reflective Gray Code	
			101011	
	000100101000			

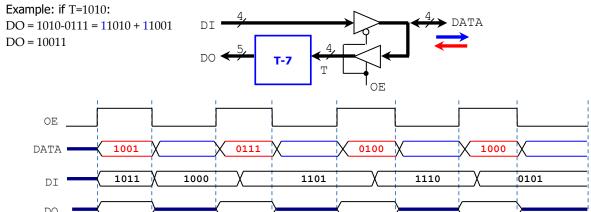
b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)

REPRESENTATION					
Decimal	Sign-and-magnitude	1's complement	2's complement		
	110001				
			10000		
			1111		
		0101001			
		1011010			


c) Convert the following decimal numbers to their 2's complement representations. (4 pts) $\sqrt{\frac{25}{3}}$

PROBLEM 2 (10 PTS)

Sketch the circuit that computes |A - B|, where A, B are 4-bit signed (2C) numbers. For example, $A = 0101, B = 1101 \rightarrow |A - B| = |5 - (-3)| = 8$. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

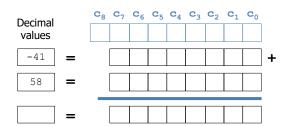

PROBLEM 3 (15 PTS)

Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

PROBLEM 4 (11 PTS)

• Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.

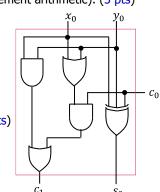
PROBLEM 5 (10 PTS)


- A microprocessor has a memory space of 1 MB. Each memory address occupies one byte. $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes.
 - a) What is the address bus size (number of bits of the address) of the microprocessor?
 - b) What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? (1 pt.)
 - c) The figure to the right shows four memory chips that are placed in the given positions:
 Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (8 pts)

Address	€ 8 bits	
0x : 0x	0 256KB	
0x : 0x	1 256KB	
0x : 0x	2 256KB	
0x : 0x	3 256KB	

PROBLEM 6 (15 PTS)

- a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts) \checkmark 37 41
- b) For the decimal numbers in the figure, perform the signed (2C) 8-bit addition. The operands must be represented in 2's complement arithmetic with 8 bits. Also, complete all the carries and summation bits. Indicate the corresponding decimal number of the 8-bit result.


Does this 8-bit operation incur in overflow?	Yes	No
Value of the overflow bit:		
Value of carry out bit:		

c) Perform binary multiplication of the following numbers (they must be represented in 2's complement arithmetic). (3 pts)

PROBLEM 7 (17 PTS)

- Given the circuit in the figure:
 - ✓ Implement s_0 using ONLY an 8-to-1 MUX. (5 pts.)
 - ✓ Implement c_1 using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)

